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 ABSTRACT 

From physical properties of double-layer honeycomb BiTeCl crystal electronic, thermodynamic and 

elastic ones have been investigated using density functional theory under the local density approximation 

(LDA) in this study. Electronic properties were studied without spin-orbit interaction (SOI) and band gap 

was found as 1.132 eV which is in good agreement with previous theoretical studies without SOI, but 

different from experimental ones. Ground state properties of new type ferroelectric BiTeCl such as lattice 

parameters, electronic total density of states (TDOS), partial density of states (PDOS) and electronic band 

structure, change of Helmholtz free energy, internal energy, entropy and constant volume specific heat by 

increasing temperature, elastic stiffness and compliance constants, stability conditions and related elastic 

properties were studied in detail.    
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1 INTRODUCTION 

 Theoretical and experimental investigations on structural, elastic, electronic, optic, dynamic and 

thermodynamical properties of crystals are highly attractive areas of research [1-9]. Since ferroelectric 

materials can show dielectric, piezoelectric and pyroelectric properties, a wide industrial area of 

application exists for them. Especially ferroelectric semiconductors can be used in sound convertors, 

sonar detectors, memory materials, etc [10, 17]. First invented ferroelectric is BaTiO3, and then highly 

sensitive fotoconducting material SbSI group of A
V
B

VI
C

VII 
semiconductors were found [18]. The search 

for more efficient, cheaper, multi-functional materials has increased interest for new types of 

ferroelectrics [19-26]. In this context, from A
V
B

VI
C

VII
 type new ferroelectric semiconductors bismuth 

tellurohalids (BiTeCl, BiTeBr, BiTeI) are important materials in that they can be used in spintronics due 

to Rashba split, as memory materials and also they show topological insulating properties (insulating in 

bulk region but conducting at surface), different surfaces can behave as different type (n or p) of 

semiconductors [27, 28].  

So we investigated structural properties of double-layer honeycomb BiTeCl crystal using density 

functional theory under the generalized gradient (GGA) and the local density approximations. The best 

convergence was gathered by LDA and electronic, thermodynamic and elastic calculations were fulfilled 

only under LDA.  

From X-ray powder diffraction [29] it was determined that crystal structure of BiTeCl is hexagonal 

of space group P63mc (186) and point group 6mm with lattice parameters of a= 8.107 and c=23.426 Bohr, 

z=2, unit cell volume of V0= 1304.091 (Bohr)
3
 and the crystal structural is given in Figure 1. In this study 
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structural optimization of BiTeCl was performed in four steps as written below and optimization results 

were given in Table 1: 

 Total energy optimization with respect to cutoff kinetic energy of plane waves (up to 52 Ha) (Ecut-

Etotopt.). 

 Total energy optimization with respect to number of k points up to 24x24x24 grid (ngkpt-Etot opt.). 

 Atomic optimization (with 5 % dilation) for lattice parameters, volume of unit cell and reduced 

coordinates (At. opt.). 

 Volume optimization of 60 steps for lattice parameters and unit cell volume by reduced 

coordinates found in atomic optimization step (Vol. opt. by at. opt. xred). 

 

 
Figure 1: Crystal structure of double layer bismuth tellurochloride [30]. 

 

Table 1 Results of four step optimization for bismuth tellurochloride 

Property Ecut-Etot opt. ngkpt-Etot opt. At. opt. 
Vol. opt. by at. 

opt. xred 
Exp. 

Ecut 40 Ha - - - - 

ngkpt (nkpt) - 14x14x14 (168) - - - 

a (Bohr) - - 7.757 7.723 8.017 

c (Bohr) - - 22.471 23.133 23.426 

V0 (Bohr)
3
 - - 1170.956 1195.014 1304.091 

 

Nearest calculated value of volume to the experimental one is of the step of volume optimization 

by reduced coordinates found in atomic optimization. Thus, for the rest of calculations lattice parameters 

and reduced coordinates were taken from this step of optimization. 

 

2 COMPUTATIONAL METHOD 

Electronic, thermodynamic and elastic properties of new type ferroelectric BiTeCl was investigated 

using ABINIT [31] under density functional theory. Calculations belonging to structural optimization 

were fulfilled by both GGA and LDA and best results were gathered within LDA by the FHI98PP self-

consistent pseudopotentials [32] with the Ceperley-Alder-Perdew-Wang scheme that takes into account 

the exchange-correlation effects [33, 34]. Thus, main topics of this article were studied only under LDA.   

For solving Kohn-Sham equations the conjugate gradient minimization method [35] was chosen 

[36]. Plane augmented waves were used as basis set for electronic wave functions. LDA based 

pseudopotentials accept true valance electrons as 6s
2
6p

3
 for Bi, 5s

2
5p

4
 for Te and 3s

2
3p

5
 for Cl. Structural 

optimizations were done  to a good convergence at 40 Ha of cutoff energy and 168 k points using 
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14x14x14Monkhorst-Pack mesh grid [37] in BiTeCl crystal, but for best results higher values of cutoff 

energy and mesh grids were utilized in the calculations of electronic and elastic  properties. 

 

3 ELECTRONIC PROPERTIES 

For electronic structure calculations of bismuth tellurochloride without SOI, pseudopotential 

method was used within LDA based on density functional theory (DFT). In fact, a grid of 14x14x14 was 

enough but for best accuracy we have chosen it as 24x24x24 in spite of consuming more time and 

producing 1872 k points which is far above the required number. As can be seen in partial and total 

density of states (PDOS and TDOS) in Figure 2, main contribution to valance band comes from 5p orbital 

of Te and 6p orbital of Bi atoms. 

 
Figure 2: PDOS’ and TDOS for BiTeCl with Fermi energy level adjusted to 0 eV. 

 

Calculated electronic band structure and TDOS for BiTeCl are given in Figure 3 where Fermi 

energy level (EF) is adjusted to 0 eV. Band gap can be obviously seen in both of band energy diagram and 

DOS just above EF. 

BiTeCl crystal has 18 valence bands and additional 18 conduction bands were used for band 

structure calculations. According to band structure calculations, in which Fermi level was set to zero, 

BiTeCl crystal has a direct band gap, as can be seen in figure 3, at Γ high symmetry point with a value of 

1.132 eV that is near to those calculations done without SOI [38]. Band gaps for all high symmetry points 

are given in Table 2. 

Some of existing experimental and theoretical results on band gap of BiTeCl are given in table 3. 

The difference between experimental results and calculated ones originates from two main factors as 

utilizing pseudopotential method and ignoring SOI. Pseudopotential method and inherent intractability of 

density functional theory can cause different estimations of band gaps up to 50 % error, mostly 

underestimated [39], but sometimes overestimated band gaps can be gathered in calculations [38]. 

Overestimation in band gap is attributed to the nature of pseudopotentials used and large spin orbit 

coupling (SOC) effect of Bi atom [41], which causes Rashba splitting in real crystal and band gap 

decreases.   
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Figure 3: Electronic band structure and DOS for BiTeCl with EF adjusted to 0 eV 

 

Table 2Band gaps (in eV) at high symmetry points of BiTeCl in matrix form 

 Γ M K A L H 

Γ 1.132 1.812 1.699 1.585 1.925 2.491 

M . 2.944 2.831 2.718 3.057 3.624 

K . . 2.604 2.491 2.831 3.397 

A . . . 2.038 2.378 2.944 

L . . . . 3.171 3.737 

H . . . . . 3.737 
 

 

 

Table 3Theoretical and experimental results on band gap of BiTeCl in eV 

Ref. [30] 

(Exp.) 

Ref. [40] 

(Exp.) 

Ref. [38] 

(Theo.) 

Ref. [41] 

(Theo.) 

Ref. [41] 

(Theo.with SOI) 

Present 

work(Theo) 

0.77 0.7 1.2 ~1.2 ~0.7 1.132 

 

 

 
Figure 4: High symmetry points and paths in first Brillouin zone in reciprocal space for hexagonal 

bismuth tellurochloride[42]. 
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From Figure 4 it is seen that high symmetry points of  Γ and A are on the path of Δ, parallel to kZ 

axis in first Brillouin zone of hexagonal structure, the path Γ-A is highly degenerate and band structure is 

non-parabolic, its dependence to k is nearly linear with a very low slope. Band structure is mostly non-

degenerate in the path of Γ-M-K-Γ. Also, band structure is approximately independent of k at all 

symmetry points. 

4 THERMODYNAMICPROPERTIES 

Thermodynamical properties of BiTeCl crystal were calculated using phonon band structure 

calculations by 50 Ha cutoff energy (although 40 was enough) and 6x6x6 grids with 28 q points [43]. The 

entropy (S), the constant-volume specific heat (CV), phonon contributions to Helmholtz free energy (F) 

and internal energy (E) as a function of temperature for BiTeCl crystal are given in Figure 5a and Figure 

5b. The contributions of phonons, i.e. of lattice, to internal and free energies do not vanish at zero 

temperature. The contributions of phonons to Helmholtz free energy, F0, and internal energy, E0, are same 

and equal to 11300 J/mol at zero Kelvin, as in Figure 5a, which shows that zero-point oscillations exist. 

As temperature increases, internal energy also increases as expected, but Helmholtz free energy decreases 

because F is not only a function of E, but it depends on temperature also by equation (1): 

 

TSEF               (1) 

 

Entropy increases with increasing temperature, as it should be, and a linear increase is seen 

especially above 250 K in Figure 5b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)                    (b) 

 

Figure 5: a) Helmholtz free (F) and internal energies (E), b) entropy (S) and constant-volume specific 

heat (CV) for BiTeCl 

 

Constant-volume specific heat for BiTeCl crystal was found from phonon calculations and it 

approaches a limit value of 147.81 J/mol.K at about 400 K, which is very close to the value of 149.66 

J/mol.K as seen in Figure 5b, the classical Dulong-Petit limit [44] of specific heat that is expressed as 

Cv=3nR where R= 8.3145 J/mol.K and number of atoms in primitive cell of BiTeCl (n) is 6. At low 

temperatures, especially below 20 K, far below Debye temperature ϴD, T
3
 law overwhelms which is 

expressed as in (2): 
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where NA is Avagadro’s number and kB is Boltzmann’s constant. At low temperatures quantum effects of 

material becomes important in contributing CV. Since our crystal is a semiconductor, free electrons do not 

exist and so, not only at low, but at any temperature a significant contribution of electrons to specific heat 

does not occur. 

 

5 ELASTICPROPERTIES 

Many fundamental features of crystals are closely related to elastic properties, that means they 

depend on elastic constants. Some of these elastic constant dependent features are inter-atomic and intra-

molecular bonding, intrinsic (microscopic) hardness, macroscopic hardness, microcracks, machinability, 

structural stability, specific heat, melting temperature, thermal expansion, equation of state and especially 

for superconductors Debye temperature, electron-phonon coupling constant and critical temperature [45-

48].  

For high accuracy in calculations of elastic constants, mesh grids of 14x14x14, 16x16x16 and 

18x18x18, strain of 5 %, ionmov of 2 (for both conserving symmetry and keeping volume constant) and 

ecut of 50 Ha  were used and average of results of different mesh grids were accepted as elastic constants 

of BiTeCl crystal.  

The relationship between stress (σij) applied on a material and strain (εij) formed in the tensor form 

are: 

klijklij c                (3)  

 

klijklij s                (4)  

 

whereσij are coefficients of stress tensor while 
kl are of the strain tensor, cijkl and sijkl are the stiffness 

compliance tensors which are reciprocal of one another. 

Elastic stiffness constants, Cij, and elastic compliance constants, Sij, of any crystal are expressed by 

6x6 symmetric matrices. In fact, Cij, is reduced form of symmetric stiffness tensor of cijkl of rank 4 and it 

has 81 elements. By symmetry and index reductions of 11=1, 22=2, 33=3, 23=32=4, 31=13=5 and 

12=21=6, number of elements of elastic constant tensor is reduced to 36. Number of independent 

elements of the matrix depends on crystal class.  After index reduction elastic stress and strain are found 

as below:  

j

i

iji C  



6

1              

(5)  

 

j

i

iji S  



6

1

             (6)  

 

There are only 2 independent elastic constants (C11 and C12) of isotropic materials, but for cubic 

ones 3, for hexagonals 5, for tetragonal-I and rhombohedral-I groups 6, for tetragonal-II and 

rhombohedral-II groups 7, in orthorhombic crystals 9, for monoclinic ones 13 and for the most 

anisotropic group of crystals -triclinics- 21 independent elastic constants exist. 5 independent elastic 

constants of hexagonal crystals are C11, C12, C13, C33 and C44. In calculations we find C66 also, but it is not 

independent, it is C66=( C11-C12)/2 [49, 50]. From diagonal elements C11 andC33 are constants about 

compression (bulk), while C44 is of shear. Elastic matrix for hexagonal crystals is as in below: 
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A general method to check whether calculated elastic constants are appropriate numbers for stable 

physical structure or not, there is a procedure and the following conditions should be provided for any 

crystal to be able stable [50]:  

 Det [Cij] > 0, where i, j= 1, 2, … 6. 

 Det [U
ij
] > 0, where U

ij
 is upper-left sub-matrices of Cij. 

 All λi> 0, where λi are eigenvalues of Cij and i= 1, 2 … 6. 

 All Cii> 0, where Cii’s are diagonal elements of Cij and i, j= 1, 2, … 6. 

 

When these steps were performed, one can find the following three required and sufficient 

conditions of stability, which are called as Born-Huang stability conditions for hexagonal crystals [49, 

50]:  

 C11 - |C12| > 0 

 C44>0  

 C33(C11+C12)-2C13
2 
> 0 

    

One can find compliance constants, Sij, by using determinant and sub-determinants of Cijas 

following [51]: 

)det(

)det()1(

ij

ij

ji

ij
C

U
S




            (7) 

 

whereUij is sub-matrix of  Cijup to the Cij. This is compliance tensor for hexagonal crystal: 

 

 

 

 

 

 

 

 

 

 

Explicit conversions [51, 52] between stiffness (Cij) and  compliance (Sij) constants can be derived 

using (7) as in the following  equations: 
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Any one of two methods above can be chosen to find out Cij’s from Sij’s.Also, one can have 

compliance constants Sij’s by existing stiffness constants Cij’s just by replacing C by S and S by C. 

 

Table 4 Calculated stiffness (GPa) and compliance (GPa
-1

) constants with data from literature 

Cij 
Present work 

(LDA) 

Literature 

(GGA) [38] 
Sij 

Present work 

(LDA) 

By the data of literature 

(GGA) [38] 

C11 78.37 56.6 S11 0.04038 0.03037 

C12 37.92 20.8 S12 0.01565 0.00243 

C13 52.37 47.6 S13 -0.05265 -0.01616 

C33 55.73 96.6 S33 0.11691 0.02628 

C44 33.71 1.7 S44 0.02966 0.58824 

C66 20.22 17.9 S66 0.04945 0.05587 

 

Elastic constants of BiTeCl are given in table 4 and they provide all of general [50] and special 

(required and sufficient) [49, 50] conditions of stability, so BiTeCl is a mechanically stable crystal. The 

value of C11 is greater than that of C33, which means that crystal is stiffer against compressions along “a” 

axis while softer and thus more compressible along “c” axis. That means bonds among nearest neighbors 

along “c” axis (along {001} planes) are weaker than that along “a” axis (along {100} planes). C44 shows 

the shear along 23 (i.e. yz) plane, that is along (100) planes as parallel to “c” axis of hexagonal crystal. 

C66 shows the shear along 12 (i.e. xy) plane, that is along (001) planes as parallel to base of crystal.  Since 

C44 is greater than C66, one can infer that reaction to plastic deformation (i.e. shear) along (100) plane is 

more than the shear along (001) plane which makes it easier to deform BiTeCl along (001) (i.e. xy) plane, 

parallel to base of hexagon, as perpendicular to “c” axis rather than along (100) (i.e. yz) plane, parallel to 

“c” axis, as perpendicular to base of hexagon. Table 5 is about calculated mass, volume and density of 

BiTeCl.  

 

Table 5 Calculated mass, volume and density of BiTeCl primitive cell. 

Property Symbol Present work (LDA) Literature (GGA) [38] Unit 

Mass M0 1.24.10
-24

 - kg 

Volume V0 1.93.10
-28

 - m
3
 

Density ρ 6.39.10
3
 6.41.10

3
 kg/m

3
 

 

Source of differences in density and density-related calculations is that since volume is 

underestimated by LDA and overestimated by GGA, density found by LDA is less than that found by 

GGA.  
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A comprehensive list of elastic properties of BiTeCl, their symbols and units are given in the table 

6 with the lone result in the literature. The ways to calculate elastic properties by using 5 independent 

elastic constants for all hexagonal crystals are given in the Appendix. 

 

Table 6 Calculated and literature data of elastic properties for BiTeCl 

 
Property 

Symbol  

and Unit 

Present work 

(LDA) 

Literature 

(GGA) [38] 

1. Voight Bulk Modulus BV (GPa) 55.31 49.1 

 Reuss Bulk Modulus BR (GPa) 54.49 36.8 

 Hill Bulk Modulus BH (GPa) 54.90 42.9 

2. Voight Shear Modulus GV (GPa) 22.18 10.5 

 Reuss Shear Modulus GR (GPa) 10.17 3.6 

 Hill Shear Modulus GH (GPa) 16.17 7.0 

3. Young Modulus E (GPa) 44.18 20.0 

4. Poisson Ratio v (-) 0.37 0.42 

5. Lame Constant -1 µ (GPa) 16.17 - 

6. Lame Constant -2 λ (GPa) 44.12 - 

7. Pugh Indicator  (K= B/G) K (-) 3.39 6.10 

8. Machinability Index µM (-) 1.63 - 

9. Longitudinal Sound Speed   vl(m/s) 3458.3 2856.0 

10. Transverse Sound Speed   vt(m/s) 1590.5 1047.4 

11. Average Sound Speed   vm(m/s) 1792.1 1189.2 

12. Debye Temperature ϴD (K) 116.3 111.4 

13. ZenerAnisotropy Index A (-) 1.67 - 

14. Universal Anisotropy Index A
U 

(-) 5.93 10.1 

15. Bulk Anisotropy Percentage AB (-) 0.74 14.37 

16. Shear  Anisotropy Percentage  AG (-) 37.15 49.40 

17. Equivalent Zener Anisotropy Index A
eq

(-) 6.79 - 

18. Shear Anisotropy Index for {100} Planes 

Between [011] and [010] Directions 
A1 (-) 4.59 - 

 

19. Shear Anisotropy Index for {010} Planes 

Between [101] and [001] Directions 
A2 (-) 4.59 - 

 

20. Shear Anisotropy Index for {001} Planes 

Between [110] and [010] Directions 
A3 (-) 1.00 - 

 

21. Bulk Modulus Along Axis “a” Ba (GPa) 296.42 - 

22. Bulk Modulus Along Axis “b” Bb (GPa) 296.42 - 

23. Bulk Modulus Along Axis “c” Bc(GPa) 86.18 - 

24. Relaxed Bulk Modulus Brelax(GPa) 54.49 - 

http://www.thalespublisher.com/
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25. Unrelaxed Bulk Modulus Bunrelax(GPa) 55.31 - 

26. 
Anisotropy Index of Bulk Modulus Along 

Axis “a” with respect to Axis “b”   
ABa(-) 1.00 - 

27. 
Anisotropy Index of Bulk Modulus Along 

Axis “c” with respect to Axis “b”   
ABc(-) 0.29 - 

28. Minimum Thermal Conductivity Kmin(Wm
-1

K
-1

) 0.906 0.273 

29. Shear Wave Modulus Cs (GPa) 20.22 - 

30. Kleinman Coefficient ξ (-) 0.61 - 

31. Lineer Compressibility Coefficient f=kc/ka(-) 3.44 - 

32. Average Compressibility Coefficient β (GPa
-1

) 0.02 - 

 

Bulk modulus (B) is reaction of material against compressibility, fracture, while shear modulus (G) 

is a measure of reaction of crystal to plastic deformation [54]. Bulk modulus is related to average bond 

strength and shear modulus is about resistance for changing angle of bond [49]. Voight value is upper 

bound for a modulus, it corresponds to equating strain throughout crystalline body to a uniform external 

strain (εi= Constant), it is measured under external pressure and in this case bulk modulus is equal to 

Bunrelax. Reussvalue is lower bound for a modulus, it corresponds to equating stress throughout crystalline 

body to a uniform external stress (σi= Constant), it is measured without external pressure (or under 

hydrostatic pressure which is equal at every point of crystalline structure making the pressure difference 

zero for any two points in the body of the crystal) and in this case bulk modulus equals to Brelax[55] as can 

be seen in the table 6 where for our case BV and Bunrelax values show 55.31 GPa while values of BR and 

Brelax are the same and equal to 54.49 GPa. For both of bulk and shear moduli, Hill value is used as 

average of upper (Voight) and lower (Reuss) values because Voight and Reuss values are correct only for 

isotropic materials, for those with anisotropy average (Hill) value should be utilized. Young modulus is a 

measure of stiffness for materials and the more the Young modulus the more the stiffness. Calculated 

Young modulus shows that BiTeCl is as hard as most of metals and it is relatively soft for shear. 

Lame constant 1 (µ) physically represents the compressibility of a crystal, while Lame constant 2 

(λ) shows shear stiffness of the material. Values of µ and λ show that the crystal is relatively compressible 

and soft.  

Bulk modulus is much bigger than shear, thus for stability of BiTeCl crystal the limiting parameter 

is shear modulus. Pugh indicator (K= B/G) was found as 3.39 which shows that material is of ductile 

nature because the values above 1.75 are accepted as ductility region whereas below that is the region of 

brittileness. Thus, we can conclude that material is malleable. For ionic materials B/G ratio is about 0.9 

while for covalent materials this ratio is about 1.6 [54]. Here, B/G ratio is 3.39 which implies that metallic 

contribution to bonding overwhelms because metallic Bi and semi-metallic Te atoms have intra-layer [38] 

and interlayer metallic bonds, even if inter-layer covalent bonds exist between Te and Cl slabs, and even 

if Bi and Te can make coordinate covalent bonds with Cl. In any case, B/G ratio shows that metallic 

bonds are prevalent in this crystal. A calculated value of 1.63 for machinability is also indicator of ductile 

nature of BiTeCl.  

Poisson ratio is an indicator of bonding type, stiffness in crystals and it is a measure of stability of 

crystal [55] against shear [56]. Poisson ratio takes values in the interval of 0-0.5 and small ratios show 

relative stability against shear [55], while large values indicate less stability. Forces in the crystal are of 

non-central type if Poisson ratio is less than 0.25. For crystals of which bonds are of covalent character 

Poisson ratio is about 0.1, for ionic character bonds it takes usually the value of 0.25 and for metallic ones 

takes values between 0.25 and 0.45; in our case with a value of 0.37 for σ, metallic bond character 

appears again [38] with forces of rather central character. Ratios of C13/C44 and C12/C66 are 1.58 and 1.88 

which are not too far from unity that also shows rather centrality of forces. 
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Using sound waves in different directions one can calculate elastic constants of a crystal 

experimentally. If elastic constants are once found, we can find out longitudinal, transverse and average 

sound waves in crystal by formulae given in Appendix. By using average sound wave, one can calculate 

Debye temperature which is an important parameter of solid because it relates elastic constants and many 

physical properties of a solid, such as specific heat, melting temperature, vibrational entropy, etc. Values 

of Debye temperatures calculated in this study and given in literature are 116.3 K and 111.4 K, 

respectively. 

Anisotropy can be correlated with microcracks and different nature of bonds along different 

directions in the crystal [47]. For an isotropic crystal elastic anisotropy (A and A
eq

) is equal to 1 and 

deviations from 1 show anisotropic nature of material [57]. In case of universal anisotropy index (A
U
) a 

value of zero means isotropy and higher values show anisotropy. Moreover, bulk (compressibility) (AB) 

and shear (AG) anisotropic percentagesare 0 for isotropic case, while departures from zero means 

anisotropy and maximum value of anisotropy can be 1 (i.e. 100%).  Almost all of anisotropy measures 

show that BiTeCl is an anisotropic material except AB, which implies that material is nearly isotropic 

against compression, and A3 that means crystal is isotropic in terms of shear for {001} planes between 

[110] and [010] directions.  Elastic anisotropy of BiTeCl single crystal arises from different natures of 

bonds intra-slabs metallic bonds within distinct Bi and Te slabs and inter-slabs Te-Cl covalent bonds. 

Shear anisotropies of A1 and A2 are equal because lattice parameters of a and b in hexagonal structure are 

equal. 

Thermal conductivity shows heat transfer rate of a material and especially for crystals it indicates 

that either the crystal can be used as heat barrier or not. For our case minimum thermal conductivity was 

calculated as 0.906 which is far from another theoretical calculation [38], but in both calculations it is 

seen that thermal conductivity of BiTeCl is near to common insulators. 

Value of linear compressibility coefficient (f) is 3.44 which shows that BiTeCl crystal is less 

compressible along {100} planes (i.e. parallel to of “c” axis and perpendicular to the base of crystal) than 

along {001} planes (i.e. parallel to base of crystal and perpendicular to “c” axis). This should be 

originated from difference in bond strengths between inter-slabs and intra-slabs. Intra-slab bonds are 

stronger than inter-layer ones. This implies that BiTeCl is relatively softer in “c” direction and stiffer in 

“a” axis. That is, reactions against compressibility (bulk modulus) along “a” and “b” axes (which are 

equal in hexagonal crystals) should be much more than that along “c” axis which is proven by values of 

Ba= Bb=296.42 GPa and Bc=86.18 GPa values. Small (0.29) value of anisotropy index of bulk modulus 

along axis “c” with respect to axis “b” (ABc) also indicates that fact. Value of average compressibility was 

calculated as 0.02 which originates from large difference between values of B and G.  

Shear wave module Cs given here is calculated for cubics but in case of hexagonal symmetry it 

corresponds to shear component of C66. UnitlessKleinman coefficient ξ is an internal strain parameter for 

cubics and it is about relative positions of cations and anions for the case of strains where the symmetry 

of crystal is conserved but atomic positions not. For hexagonal BiTeCl it was calculated as 0.61.  

 

6 CONCLUSION 

From electronic properties total and partial DOS’, band structure, from thermodynamic features F, 

E, S, CV and from elastic properties elastic stiffness and compliance constants, stability conditions and 

several related important elastic properties were studied in detail. Result of band gap is in coherence with 

theoretical studies without SOI and different from experimental values, calculated thermodynamic 

features are found as expected, and some of elastic properties could be compared with existing theoretical 

data but no comparison with experimental results could be done for elastic features due to the lack of 

experimental studies. 
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APPENDIX 

Required formulas for calculating some of elastic properties by using elastic constants are 

given in the list below. 
1. Bulk Modulus (B) (GPa) [49] 

BV= (2C11+2C12+4C13+C33)/9     

BR= {(C11+C12)C33-2C13
2
}/(C11+C12+2C33-4C13) = C

2
/M   or  

BR= 1/[(S11+S22+S33)+2(S12+S13+S23)]    

B=BH= (BV+BR)/2    

2. Shear Modulus (G) (GPa) [49] 

GV= (C11+C12+2C33-4C13+12C44+12C66)/30     or  

GV= 15/[4(S11+S22+S33)- 4(S12+S13+S23) + 3(S44+S55+S66)]  

GR= {[(C11+C12)C33-2C13
2
]C44C66}/{3BVC44C66+[(C11+C12)C33-2C13

2
](C44+C66)}5/2  

G=GH= (GV+GR)/2  

3. Young Modulus (E) (GPa) [49, 59] 

 E= 9BHGH/(3BH+GH)  

4. Poisson Ratio (v) (-)[49] 

v= (3BH-2GH)/[2(3BH+GH)] 

5. Lame Constant-1 (µ) (GPa) [58] 

µ= E/[2(1+v)] 

6. Lame Constant-2 (λ) (GPa) [58] 

λ= vE/[(1+v)(1-2v)]   

7. Pugh Indicator  (K) (-) [47, 49, 55, 58, 59] 

K= B/G         

8. Machinability Index (µM) (-) [48, 60] 

µM= BH/C44  

9. Longitudinal Sound Speed  (vl) (m/s) [40, 47, 56, 59, 60]   

vl= [(B+4G/3)/d]
1/2

      

10. Transverse Sound Speed  (vt) (m/s) [40, 47, 50, 59, 60] 

vt= (G/d)
 1/2

 

11. Average Sound Speed  (vm) (m/s) [40, 47, 50, 59, 60] 

vm= [(vl
-3

+2vt
-3

)/3]
-1/3  

        

12. Debye Temperature (ϴD) (K) [40, 47, 50, 59]  

ϴD= [h/(2πkB)](6π
2
nNAd/M)

1/3
vm 

13. Zener Anisotropy Index (A) [57, 59] 

A= 2C44/(C11-C12)= C44/C66      

14. Universal Anisotropy Percentage (A
U
) (-) [40, 47, 57, 59] 

A
U
= 5GV/GR+BV/BR-6       

15. Bulk Anisotropy Percentage (AB) (-) [40, 47] 

AB = 100(BV-BR)/(BV+BR)    
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16. Shear Anisotropy Index (AG) (-)[40, 47] 

AG = 100(GV-GR)/(GV+GR)        

17. Equivalent Zener Anisotropy Index (A
eq

) [57] 

A
eq

 = (1+5A
U
/12)+ {(1+5A

U
/12)

2
-1}

1/2
      

18. Shear Anisotropy Index for {100} Planes Between [011] and [010] Directions (A1) (-) 

A1= 4C44/(C11+C33-2C13)    [40, 47] 

19. Shear Anisotropy Index for {010} Planes Between [101] and [001] Directions (A2) (-)  

A2= 4C55/(C22+C33-2C23)    [40, 47] 

A2= 4C55/( C11+C33-2C13)  

20. Shear Anisotropy Index for {001} Planes Between [110] and [010] Directions (A3) (-) 

A3= 4C66/(C11+C22-2C12)    [40, 47] 

A3= 4C66/(C11+C11-2C12)= 4C66/(2C11-2C12)= 2C66/(C11-C12)= C66/[(C11-C12)/2]C66/C66=1 

 

(For hegxagonal structrures only α=1, but for cubics α=1, β=1) [40] 

α=[(C11-C12)(C33-C13)-(C23-C13)(C11-C13)] / [(C33-C13)(C22-C12)-(C13-C23)(C12-C23)] 

α=[(C11-C12)(C33-C13)-(C13-C13)(C11-C13)] / [(C33-C13)(C11-C12)-(C13-C13)(C12-C13)] 

α=[(C11-C12)(C11-C12)-0] / [(C11-C12)(C11-C12)-0]= 1 

 

β=[(C22-C12)(C11-C13)-(C11-C12)(C23-C12)] / [(C22-C12)(C33-C13)-(C12-C23)(C13-C23)]  [40] 

β=[(C11-C12)(C11-C13)-(C11-C12)(C13-C12)] / [(C11-C12)(C33-C13)-(C12-C13)(C13-C13)] 

β=[(C11-C12){(C11-C13)-(C13-C12)}] / [(C11-C12)(C33-C13)] 

β={(C11-C13)-(C13-C12)}/(C33-C13) 

β={(C11+C12-2C13)}/(C33-C13)= f 

 

Λ= C11+ C22α
2
+C33β

2
+2C12α+2C13β +2C23αβ [40] 

Λ= C11+ C11α
2
+C33β

2
+2C12α+2C13β +2C13αβ  

Λ= C11+ C11.1
2
+C33β

2
+2C12.1+2C13β +2C13.1β  

Λ= 2C11+2C12+C33β
2
+4C13β        

 

Λ(α=β=1)=  2C11+2C12+C33+4C13 [40] 

 

21. Bulk Modulus Along Axis “a”  (Ba) (GPa) [40] 

Ba = a(dP/da)=Λ/(1+α+β)=Λ/(1+1+β)=Λ/(2+β)  

22. Bulk Modulus Along Axis “b”  (Bb) (GPa) [40] 

Bb = b(dP/db)= Ba/α= Ba/1= Ba        

23. Bulk Modulus Along Axis “c”  (Bc) (GPa) [40] 

Bc = c(dP/dc)= Ba/β          

24. Relaxed Bulk Modulus (Brelax) (GPa) [40] 

Brelax=Λ/(1+α+β)
2
=Λ/(1+1+β)

2
=Λ/(2+β)

2
      

25. Unrelaxed Bulk Modulus (Bunrelax) (GPa) [40] 

Bunrelax,(α=β=1)= Λ(α=β=1)/(1+α+β)
2
= Λ(α=β=1)/(1+1+1)

2
= Λ(α=β=1)/9  

26. Anisotropy Index of Bulk Modulus Along Axis “a” with respect to Axis “b”  (ABa) (-) 

ABa = Ba/Bb=α=1  [40]   

27. Anisotropy Index of Bulk Modulus Along Axis “c” with respect to Axis “b”  (ABc) (-) 
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ABc = Bc/Bb=α/β=1/β  [40]   

28. Minimum Thermal Conductivity (Kmin) (-) [38] 

Kmin= kBn
2/3

(2vt+vl)     

29. Shear Wave Modulus (Cs) (GPa) [56] 

Cs = (C11-C12)/2= C66    

30. Kleinman Coefficient (ξ) (-) [56] 

ξ = (C11+8C12)/ (7C11+2C12)      

31. Lineer Compressibility Coefficient (f=kc/ka) (-) [48, 60] 

f= (C11+C12-2C13)/(C33-C13)        

32. Average Compressibility Coefficient (β) (1/GPa) [48, 58, 60] 

β= 1/BH   
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